![](https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEh5O2KUZFjIikc2fNKAlorHI73HfxQ-YzhN7P5diO4zYuF2P0jXajbj2XWSQuBl92hn348JE8xHNu0M1078cuRjvz1dyeZJC9HT9aedz8cQfOw_m_hqZPjzb0uKXurqwwBZn-Qy89vA_KOl/s400/CCRES+3.jpg)
Cultivation of microalgae can be done in open systems (lakes, ponds) and in controlled closed systems called photo-bioreactors (PBR).
Open cultivation systems use ponds or lakes with added mechanical equipment to grow microalgae. Open ponds were the first cultivation technology for mass cultivation of microalgae. In this system water levels are kept no less than 15 cm, and algae are cultured under conditions identical to their natural environment. The pond is designed in a raceway configuration, in which a paddlewheel circulates and mixes the algal cells and nutrients.
Open cultivation system for growing algae
Outdoor algae farming
Other types of construction use: 1) circular ponds where circulation is provided by rotating arms; 2) inclined systems where mixing is achieved through pumping and gravity flow.
Closed cultivation systems use PBRs containers made of transparent materials for optimised light exposure. Enclosed PBRs have been employed to overcome the contamination and evaporation problems encountered in open systems. These systems are generally placed outdoors for illumination by natural light. The cultivation vessels have a large surface area-to-volume ratio. The most widely used PBR is a tubular design, which has a number of clear transparent tubes, usually aligned with the suns rays. The tubes are generally less than 10 centimeters in diameter to maximize sunlight penetration. The medium broth is circulated through a pump to the tubes, where it is exposed to light for photosynthesis, and then back to a reservoir. A portion of the algae is usually harvested after it passes through the solar collection tubes, making continuous algal culture possible.
Tubular photobioreactor for growing algae
PBRs require cooling during daylight hours, and the temperature must be regulated at night as well. This may be done through heat exchangers located either in the tubes themselves or in the degassing column.
The advantages of enclosed PBRs are obvious. They can overcome the problems of contamination and evaporation encountered in open systems. The biomass productivity of PBRs can average 16 times more than that of a traditional raceway pond. Harvest of biomass from PBRs is less expensive than from raceway ponds, because the typical algal biomass is about 30 times as concentrated as the biomass found in raceways. Controlled conditions in closed systems are suitable for genetic modification of algae cells and enable cultivation of better quality species (e.g. microalgae with higher oil content).
However, closed systems also have disadvantages. Technological challenges with PBRs are: overheating, bio-fouling, oxygen accumulation, difficulty in scaling up, cell damage by shear stress & deterioration and expensive building & maintenance. Light limitation cannot be entirely overcome because light penetration is inversely proportional to the cell concentration. Attachment of cells to the tubes walls may also prevent light penetration. Although enclosed systems can enhance biomass concentration, the growth of microalgae is still suboptimal due to variations in temperature and light intensity.
R&D in algae biotechnologies focus on developing innovative PBR designs and materials. Different developed designs are: serpentine, manifold, helical and flat containers. From these elevated reactors can be oriented and tilted at different angles and can use diffuse and reflected (artificial) light for growth. More specific information is available in PBRs section.
After growing in open ponds or PBRs, the microalgae biomass needs to be harvested for further processing. The commonly used harvest method is through gravity settlement or centrifuge. The oil from the biomass is extracted through solvent and further processed into biodiesel.